首页> 外文OA文献 >Sobolev and isoperimetric inequalities with monomial weights
【2h】

Sobolev and isoperimetric inequalities with monomial weights

机译:具有单项权重的sobolev和等周不等式

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We consider the monomial weight |x1|A1⋯|xn|An in Rn, where Ai⩾0 is a real number for each i=1,…,n, and establish Sobolev, isoperimetric, Morrey, and Trudinger inequalities involving this weight. They are the analogue of the classical ones with the Lebesgue measure dx replaced by View the MathML source, and they contain the best or critical exponent (which depends on A1,…,An). More importantly, for the Sobolev and isoperimetric inequalities, we obtain the best constant and extremal functions.\ud\udWhen Ai are nonnegative integers, these inequalities are exactly the classical ones in the Euclidean space RD (with no weight) when written for axially symmetric functions and domains in RD=RA1+1×⋯×RAn+1.
机译:我们考虑Rn中的单项式权重| x1 | A1⋯| xn | An,其中Ai⩾0是每个i = 1,...,n的实数,并建立涉及此权重的Sobolev,等距,Morrey和Trudinger不等式。它们是经典方法的类似物,其中的Lebesgue度量dx替换为“最佳”或“关键”指数(取决于A1,…,An)。更重要的是,对于Sobolev和等距不等式,我们获得了最佳的常数和极值函数。\ ud \ ud当Ai为非负整数时,当为轴向对称编写时,这些不等式恰好是欧几里德空间RD中的经典不等式(无权重)。 RD = RA1 + 1×⋯×RAn + 1中的函数和域。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号